TRINITY COLLEGE NABBINGO S.3 END OF TERM II 2019

CHEMISTRY EXAMINATION PAPER 2

DURATION: 2 HOURS

GUIDE.

SECTION A -50

B-30

80

INSTRUCTIONS:

- Attempt all questions in section A and B.
- Answers to section A should be put in the spaces provided.
- Each question in section B should be answered on a fresh page.

SECTION A (50 MARKS)

1. (a) A new iron knife was left in a banana plantation for two weeks. (i) State what was observed on the knife after two weeks. A brown coating on the knife	(01mark)
(ii) Name the process that occurred on the knife after the two weeks.	(01mark)
Kusting.	
(b) (i) State two conditions that favoured the above process. - Presence of oxygen	(01mark)
- Presence of oxygen - Presence of moisture (ii) Outline two ways of preventing the above process.	(01mak)
- Oiling - Use of stainless steel Knife. (a) (i) above	
(c) State one advantage and one disadvantage of the process in (a) (i) above.	

Advantage Improves soil feetility by adding Ion to the soil. Disadvantage News out machines; May cause friction in machines; Makes Cutfling mac	\	(½ mark)
Near out machines; May cause faction in machines; Matter County Blunt. 2. The atomic numbers of elements X,Y and Z are 11,15 and 17 respectively; (a) Write the electronic configuration of; (½ each) (Element Z can react with both X and Y to form solid products Q and R respectively; (i) Identify which one of the products would have a lower melting point? (ii) Give a reason for your answer (iii) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point?	Advantage Advantage Loop to the Soil.	
Near out machines; May cause faction in machines; Matter County Blunt. 2. The atomic numbers of elements X,Y and Z are 11,15 and 17 respectively; (a) Write the electronic configuration of; (½ each) (Element Z can react with both X and Y to form solid products Q and R respectively; (i) Identify which one of the products would have a lower melting point? (ii) Give a reason for your answer (iii) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Give a reason for your answer (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point? (iv) Identify which one of the products would have a lower melting point?	Improves soil fertility by adding	(½ mark)
2. The atomic numbers of elements X,Y and Z are 11,15 and 17 respectively. (1/2 each) Write the electronic configuration of; X	Disadvantage May cause friction in machines;	Makes cutting me blunt.
(a) Write the electronic configuration of: X	Weak out machines,	
(a) Write the electronic configuration of: X	2. The atomic numbers of elements X, Y and Z, are 11,10	(½ each)
x 2:8:1 Y 2:8:5 Z 2:2:7 (b) State the period in the periodic table to which each of the three elements belongs. (½ mark) ferrod 3: (c) Element Z can react with both X and Y to form solid products Q and R respectively; (i) Identify which one of the products would have a lower melting point? (01mark) R (ii) Give a reason for your answer (01mark) R is a covalent compound whereas Q is 100ic hence R has a lower melting point. (d) Write the formula of the compound formed between Z and Y. (01mark)	Write the electronic configuration of;	
(b) State the period in the periodic table to which each of the three elements belongs. (½ mark) Period 3	2.2.1	
(b) State the period in the periodic table to which each of the three elements belongs. (½ mark) Period 3	X 2:8/1	
(b) State the period in the periodic table to which each of the three elements belongs. (½ mark) Period 3	Y 2:8:5	
(c) Element Z can react with both X and Y to form solid products Q and R respectively; (i) Identify which one of the products would have a lower melting point? (01mark) (ii) Give a reason for your answer (01mark) R is a covalent compound whereas Q is some hence R has a lower melting point. (d) Write the formula of the compound formed between Z and Y. (01mark)		
(c) Element Z can react with both X and Y to form solid products Q and R respectively; (i) Identify which one of the products would have a lower melting point? (01mark) (ii) Give a reason for your answer (01mark) R is a covalent compound whereas Q is some hence R has a lower melting point. (d) Write the formula of the compound formed between Z and Y. (01mark)	(b) State the period in the periodic table to which each of the days	
(i) Identify which one of the products would have a lower melting point? (ii) Give a reason for your answer (iii) Give a reason for your answer (iv) Give a reason for your	Period 3	
(i) Identify which one of the products would have a lower melting point? (ii) Give a reason for your answer (iii) Give a reason for your answer (iv) Give a reason for your	(a) Element Z can react with both X and Y to form solid products Q and R res	pectively;
(ii) Give a reason for your answer R is a covalent compound whereas Q is sonic hence R has a lower method point. (d) Write the formula of the compound formed between Z and Y. (01 mark)	(i) Identify which one of the products would have a lower melting point?	(01mark)
(ii) Give a reason for your answer R is a covalent compound whereas Q is sonic hence R has a lower method point. (d) Write the formula of the compound formed between Z and Y. (01 mark)		
(ii) Give a reason for your answer R is a covalent compound whereas Q is 10010 hence R has a lower mething point: (d) Write the formula of the compound formed between Z and Y. (01 mark)		
R is a covalent compound whereas Q is sonic hence R has a lower melting point. (d) Write the formula of the compound formed between Z and Y. (01 mark)	(ii) Give a reason for your answer	
(d) Write the formula of the compound formed between Z and Y. (01mark)	p: whereas Q is ionic hence	R has a
(d) Write the formula of the compound formed between Z and Y. (01mark)	lower melting point.	
7' Y3 Z3Y. or YZ3.	(d) Write the formula of the compound formed between Z and Y.	(01mark)
	7' Y3 Z3Y. or YZ3.	

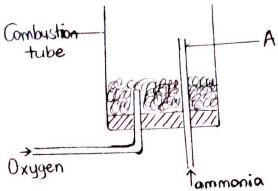
3. The figure below is a set-up of an apparatus used to prepare carbon monoxide and investigate its chemical reactions. Charcoal copper(11) oxide $\uparrow \uparrow$ heat Potassium hydroxide solution. (1/2 mark) (a) Name gas x. Carbon dioxide (1 ½ marks.) (b) Write an equation for the reaction that took place in tube A CO2g) + Cs, -> 2COg, (c) State; (i) the purpose of potassium hydroxide solution and write an equation to support your answer. (02marks) To absorb the unreacted/excess carbon dioxide. (01mark) (ii) What was observed in tube B. solid turned to brown

4. (a) (i) Name the reagents commonly	used to prepare ammonia in the labora	tory. (01mark)
- Calcium hydroxi	ide.	
- Ammonium Chle	oricle.	
(ii) Why is ammonia not dried using co		(01mark)
Because it reacts with	If it to form ammonium	suphate.
(b) State;		
(i) the condition(s) necessary for the r	reagents in (a) to produce ammonia gas.	(01mark)
Presence of heat.		
(ii) the surbstance used to dry ammor		(½ mark)
Calcium oxide.		
(c) Write a well balanced equation for	or the reaction between ammonia and co	pper (ii) oxide.
		(1 ½ marks)
3CuO6, + 2NH36	$\rightarrow 3Cu(s) + 3H_2O_{cl} +$	N ₂ G
5. Carbon dioxide can best be preparacid. The reaction proceeds according	red by reacting calcium carbonate with one of the following equation;	dilute hydrochloric
$CaCO_3(s) + 2HCl(aq) \longrightarrow$	$CaCl_2(aq) + CO_2(g) + H_2O(l)$	
(a) Explain why sulphuric acid is no	ot normally used instead of hydrochloric	acid. (02marks)
Sulphuric gold re Calcium Sulphate which	eacts with calcium carbon	nate to form
Cociting on the calcium	n carbonate hence stopping	the reaction.

7
(b) Calculate the mass of calcium carbonate that would liberate 250cm ³ of carbon dioxide at
(b) Calculate the mass of calcium carbonate that would need to room temperature). Q.F.M. Q (16x3) room temperature (Ca = 40, C = 12; O = 16, 1 mole of gas occupies 24dm ³ at room temperature). Q (O3marks)
Carlondincide. = VOO
I mole of Calcium carbonate forms mole of Carbondioxide.
1000 of calciumcarbonate form a continuation carlonate
24000 cm of was is proceed to
1 cm^3 $9''$ $\frac{100}{31000}$ $\frac{9}{9}$ $\frac{9}{60000}$
affice)
250 cm ³ & W2 is produced by (100 x250) 9 & Caraum 9 (24000) = 1.0429 of
Calcium Carlaina
6. A metal 7 contains 50% 7.
6. An oxide of a metal Z contains 50% Z. (03 marks)
(a) Calculate the empirical formula of the metal oxide (Z = 30, O = 10).
Descentage of 0 = 100-50 = 50%
Memeris
For the state of t
No 9 moles 50 50 16
= 1.6667 3.125
Divide by the 1:6667 3:125
Smallost 1.6667 1.6667
Simplest ratio: 1:2
Simplest Formula ZD2
(b) If the relative density of Z is 54; find the molecular formula of Z.
$R \cdot M \cdot M = RD \times 2 = 54 \times 2 = 108$ $(20_2)_2 = 2204$
$(20_2)_0 = 108$
(30+32)n = 108
62n = 108
62 62
$n=2^{2}$

behind the method used.	Principle
Mixture	Method of separation Duff in rates of mount over as to long
(a) Chlorophyll	Chromatography phone on Doff in solubility of pigments in a given solvent.
pigments	1 manum Chtortale
(b) Ammonium chloride	
and potassium sulphate	Dre at fact close boiling points
(c) Water and ethanol	Fractional Statillation Defferent but the solution water.
(d) Sand and water	TINGTION V
(e) Coconut oil and	the of a separating of and water are funnel.
water	funnel VI

8. A mixture containing zinc nitrate and zinc carbonate was shaken with excess water and filtered.


	(01mark)
(a) Identify the residue.	
Zinc carbonate.	
(b) The dry residue was heated strongly.	(01mark)
(i) State what was observed. White solid decomposed to a yellow restraine	when
(ii) Write equation for the reaction that took place.	(1 ½ marks)
Zn CO3 (s) + CO2 (g)	

	(c) Ammonia solution was added to the filtrate dropwise till in excess. State what was observed.
	(1 ½ marks)
262	A white precipitate soluble in excess to form a colourless
.03	Solution.
57	(01 mark)
1	9. (a) (i) What is meant by water pollution?
1	9. (a) (i) What is meant by water pollution? Lething the contamination of water by adding undesirable Substances to if.
	substances to if.
	(III mark)
	(ii) State two substances that can cause water pollution.
	- Sewage - oil from Ship wretched tankers my
	- Sewage to off-from ship wretched tankers any 2 - Detergents tot water from industries.
1	(iii) Give two ways how you can tell water is polluted. (01marks)
-	(iii) Give two ways new year sum
-	The water becomes smelly. The water becomes smelly. (has cutaste)
	The water becomes smelly.
	_ It B usually fasty - (Mas as
	(b) State the role of each of the following in water treatment process. (02marks)
	(i) Addition of potassium aluminium sulphate (ALUM)
	(i) Addition of potassium aruminant out
	Collects suspended particles into clamps that can sink to
	the pottom of the plant.
	(ii) Sand and gravel 10 per trap tiny suspended particles as away of fiftration.
	10 px trap ting separate
-	(iii) Chlorine
-	Disinfectant.
	Distriction

(iv) Sodium carbonate.	
* Soften the water.	
pH balancing 10. Dry chlorine gas can be prepared from manganese(iv) oxide and substance x. passed through wash bottles containing water and concentrated sulphuric acid responses.	The gas is pectively and
finally collected by method Z. (a) (i) Identify substance X and method Z. X Concentrated hydrochloric acid. Z Down ward delivery.	(01mark)
(ii) Write equation for the reaction leading to the formation chlorine gas. $MnO_{2\omega} + 4HCl_{\omega} \rightarrow MnCl_{2(\omega)} + 2H_{2}O_{\omega} + U$	(1 ½ marks)
(iii) State the conditions(s) for the reaction above - Heat Concentrated acid.	(01mark)
 (b) State the role of passing chlorine gas in wash bottle containing. (i) Water To absorb the hydrogen chloride (acid) fum 	(½ mark)
(ii) Concentrated sulphuric acid. To dry the gas.	(01mark)

SECTION B (ATTEMPT ALL QUESTIONS IN THIS SECTION)

- 11. (a) With the aid of a labeled diagram describe how a dry sample of ammonia is prepared in the laboratory. (07marks)
- (b) Study the diagram below and attempt the questions that follow.

- (i) State what is observed when the ammonia is ignited at tube A. (01mark)
- (ii) Write an equation for the reaction that took place in b(i) above. (1 ½ marks)
- (iii) What is the role of the glass wool? (01mark)
- (c) Using equations only describe how nitric acid is manufactured from ammonia. (4 ½ marks)
- 12. Part of the periodic table is shown below. The letters are not the usual symbols for the elements.

							1	VIII
	ıı		111	IV	V	VI	VII	
							Т	
P	0				S		U	
P	-						V	W
Р	Q				3		V	W

(a) (i) Which one of the elements T, U and V react most vigorously with Q? G your answer.	ive a reason for (1 ½ marks)
(ii) Which is the most reactive metal?	(½ mark)
(iii) Write the formula of the compound formed between Q and S.	(01mark)
(iv) Give three characteristics of the compound formed between S and U.	(03marks)
(v) Which elements represented in the table can react as reducing agents?	(01mark)
(b) In a titration experiment carried out by Jomu a senior 3G student at TCP coll 0.2M potassium hydroxide solution required exactly 24.60cm ³ of a dibasic acid, phenolphthalein indicator to attain and end point.	lege; 25.0cm ³ of H ₂ Y using
(i) What name is given to the above reaction between acid and potassium hydrox	kide solution.
	(1mark)
(ii) Write equation for the reaction that took place.	(1 ½ marks)
(iii) Calculate the number of moles of potassium hydroxide that reacted.	(1 ½ marks)
(iv) Find the moles of acid that reacted.	(02marks)
(v) Calculate the concentration of the acid in moles per litres.	(02marks)

END

BE TRUE	TRINITY COLLEGE NADDITO	
Do not write in this Margin	Class Stream Signature	Do no write in this Margin
ii)	4NH3g) + 302g) -> 2N2g) + 6H2Ou	
ii)	To ensure that oxygen is extenly spread throughout the combustion tube.	
c)	habor Manufacture of nitric acid. 4NHzg, +50zg, -> 4NOg, +6HzQu,	12
	$2N0g + 02g \rightarrow 2N02g$	12
	2H2Ow + 4NO2g + O2g -> 4HNO3(ag)	12

TRINITY COLLEGE NABBINGO	
<i>f</i> = ==================================	Do not
Do not write Class Stream Name	in this Margin
Subject	margin
Question 12.	TIL
ail T; among halogens, reactivity decreases down the	12
group hence T which is on top is most reactive.	
	4
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	12
\sim	A.
iii) QXS.	01
Ω_3S_3 .	
in) - The compound has a low melting and boiling point!	
- It is insoluble in water but soluble in non-polar solvents	
- It is insoluble in water but scrapic in the	
- It is a poor conductor of heat and electricity.	
V) Pand Q	
y (and co	
bis Neutralisation.	
ij 2KOH (aq) + H2Y(aq) -> K2Y(aq) + 2H2O()	
1 cm³ protassium hydroxide solution contain 0.2 moles 1 cm³ protassium hydroxide solution conteun (0.2) moles	
iii) 1000 cm³ of potassium hydroxide solution contain. 02 maes	(15)
may potassium hydronicae statut comacin e =) mod	
25.0 cm² & Potassium hydroxide solution contain 0.2 x25	males
	1
= 0.005	molos.
was and that manufact.	
N) moles of acid that reacted.	(2)
2 mdes of KOH react with 1 mole of they.	
I mole & KOH reacts with (12) indes of ther this	
2 moles of KOH react with 1 mole of they. 1 mole of KOH reacts with (1/2) moles of Her of 1005 moles of KOH react with (1/2 x0.005) moles of Her	.0025 mles
	D. H.Y.

T-7
\ E /
1:1
V
BE TRUE

Do not

write

in this

Margin

TRINITY COLLEGE NABBINGO

	Class Stream		Name		
	Subject		Signatu	Jre	
)	24.60 cm3 of	HaY W	ontain	0.0025 moles	

1 cm³ g Hz Contains (0.0025) moles
2460 1

1000 cm³ g Hz Contain (0.0025 x 1000) moles
2460

= 0.102 M= 0.102 moles per litre. Do not

write

in this

Margin